it-swarm.asia

لماذا 2 * (i * i) أسرع من 2 * i * i في Java؟

يستغرق برنامج Java التالي ما بين 0.50 ثانية و 0.55 ثانية ليتم تشغيله:

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

إذا استبدلت 2 * (i * i) بـ 2 * i * i ، فستستغرق العملية من 0.60 إلى 0.65 ثانية. كيف ذلك؟

ركضت كل إصدار من البرنامج 15 مرة ، بالتناوب بين الاثنين. وهنا النتائج:

 2*(i*i)  |  2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149  | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412  | 0.6393969
0.5466744 | 0.6608845
0.531159  | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526

استغرق أسرع تشغيل لـ 2 * i * i وقتًا أطول من التشغيل الأضعف لـ 2 * (i * i). إذا كان كلاهما فعالين ، فإن احتمال حدوث ذلك سيكون أقل من 1/2 ^ 15 * 100٪ = 0.00305٪.

781
Stefan

هناك اختلاف بسيط في ترتيب الرمز البريدي.

2 * (i * i):

     iconst_2
     iload0
     iload0
     imul
     imul
     iadd

مقابل 2 * i * i:

     iconst_2
     iload0
     imul
     iload0
     imul
     iadd

للوهلة الأولى ، يجب ألا يحدث هذا فرقًا ؛ إذا كان أي شيء الإصدار الثاني هو أكثر مثالية لأنه يستخدم فتحة واحدة أقل.

لذلك نحن بحاجة إلى حفر أعمق في المستوى الأدنى (JIT)1.

تذكر أن JIT يميل إلى فك الحلقات الصغيرة بقوة شديدة. في الواقع ، نلاحظ وجود 16x في حالة 2 * (i * i):

030   B2: # B2 B3 <- B1 B2  Loop: B2-B2 inner main of N18 Freq: 1e+006
030     addl    R11, RBP    # int
033     movl    RBP, R13    # spill
036     addl    RBP, #14    # int
039     imull   RBP, RBP    # int
03c     movl    R9, R13 # spill
03f     addl    R9, #13 # int
043     imull   R9, R9  # int
047     sall    RBP, #1
049     sall    R9, #1
04c     movl    R8, R13 # spill
04f     addl    R8, #15 # int
053     movl    R10, R8 # spill
056     movdl   XMM1, R8    # spill
05b     imull   R10, R8 # int
05f     movl    R8, R13 # spill
062     addl    R8, #12 # int
066     imull   R8, R8  # int
06a     sall    R10, #1
06d     movl    [rsp + #32], R10    # spill
072     sall    R8, #1
075     movl    RBX, R13    # spill
078     addl    RBX, #11    # int
07b     imull   RBX, RBX    # int
07e     movl    RCX, R13    # spill
081     addl    RCX, #10    # int
084     imull   RCX, RCX    # int
087     sall    RBX, #1
089     sall    RCX, #1
08b     movl    RDX, R13    # spill
08e     addl    RDX, #8 # int
091     imull   RDX, RDX    # int
094     movl    RDI, R13    # spill
097     addl    RDI, #7 # int
09a     imull   RDI, RDI    # int
09d     sall    RDX, #1
09f     sall    RDI, #1
0a1     movl    RAX, R13    # spill
0a4     addl    RAX, #6 # int
0a7     imull   RAX, RAX    # int
0aa     movl    RSI, R13    # spill
0ad     addl    RSI, #4 # int
0b0     imull   RSI, RSI    # int
0b3     sall    RAX, #1
0b5     sall    RSI, #1
0b7     movl    R10, R13    # spill
0ba     addl    R10, #2 # int
0be     imull   R10, R10    # int
0c2     movl    R14, R13    # spill
0c5     incl    R14 # int
0c8     imull   R14, R14    # int
0cc     sall    R10, #1
0cf     sall    R14, #1
0d2     addl    R14, R11    # int
0d5     addl    R14, R10    # int
0d8     movl    R10, R13    # spill
0db     addl    R10, #3 # int
0df     imull   R10, R10    # int
0e3     movl    R11, R13    # spill
0e6     addl    R11, #5 # int
0ea     imull   R11, R11    # int
0ee     sall    R10, #1
0f1     addl    R10, R14    # int
0f4     addl    R10, RSI    # int
0f7     sall    R11, #1
0fa     addl    R11, R10    # int
0fd     addl    R11, RAX    # int
100     addl    R11, RDI    # int
103     addl    R11, RDX    # int
106     movl    R10, R13    # spill
109     addl    R10, #9 # int
10d     imull   R10, R10    # int
111     sall    R10, #1
114     addl    R10, R11    # int
117     addl    R10, RCX    # int
11a     addl    R10, RBX    # int
11d     addl    R10, R8 # int
120     addl    R9, R10 # int
123     addl    RBP, R9 # int
126     addl    RBP, [RSP + #32 (32-bit)]   # int
12a     addl    R13, #16    # int
12e     movl    R11, R13    # spill
131     imull   R11, R13    # int
135     sall    R11, #1
138     cmpl    R13, #999999985
13f     jl     B2   # loop end  P=1.000000 C=6554623.000000

نرى أن هناك سجل واحد "مسكوب" على المكدس.

وللإصدار 2 * i * i:

05a   B3: # B2 B4 <- B1 B2  Loop: B3-B2 inner main of N18 Freq: 1e+006
05a     addl    RBX, R11    # int
05d     movl    [rsp + #32], RBX    # spill
061     movl    R11, R8 # spill
064     addl    R11, #15    # int
068     movl    [rsp + #36], R11    # spill
06d     movl    R11, R8 # spill
070     addl    R11, #14    # int
074     movl    R10, R9 # spill
077     addl    R10, #16    # int
07b     movdl   XMM2, R10   # spill
080     movl    RCX, R9 # spill
083     addl    RCX, #14    # int
086     movdl   XMM1, RCX   # spill
08a     movl    R10, R9 # spill
08d     addl    R10, #12    # int
091     movdl   XMM4, R10   # spill
096     movl    RCX, R9 # spill
099     addl    RCX, #10    # int
09c     movdl   XMM6, RCX   # spill
0a0     movl    RBX, R9 # spill
0a3     addl    RBX, #8 # int
0a6     movl    RCX, R9 # spill
0a9     addl    RCX, #6 # int
0ac     movl    RDX, R9 # spill
0af     addl    RDX, #4 # int
0b2     addl    R9, #2  # int
0b6     movl    R10, R14    # spill
0b9     addl    R10, #22    # int
0bd     movdl   XMM3, R10   # spill
0c2     movl    RDI, R14    # spill
0c5     addl    RDI, #20    # int
0c8     movl    RAX, R14    # spill
0cb     addl    RAX, #32    # int
0ce     movl    RSI, R14    # spill
0d1     addl    RSI, #18    # int
0d4     movl    R13, R14    # spill
0d7     addl    R13, #24    # int
0db     movl    R10, R14    # spill
0de     addl    R10, #26    # int
0e2     movl    [rsp + #40], R10    # spill
0e7     movl    RBP, R14    # spill
0ea     addl    RBP, #28    # int
0ed     imull   RBP, R11    # int
0f1     addl    R14, #30    # int
0f5     imull   R14, [RSP + #36 (32-bit)]   # int
0fb     movl    R10, R8 # spill
0fe     addl    R10, #11    # int
102     movdl   R11, XMM3   # spill
107     imull   R11, R10    # int
10b     movl    [rsp + #44], R11    # spill
110     movl    R10, R8 # spill
113     addl    R10, #10    # int
117     imull   RDI, R10    # int
11b     movl    R11, R8 # spill
11e     addl    R11, #8 # int
122     movdl   R10, XMM2   # spill
127     imull   R10, R11    # int
12b     movl    [rsp + #48], R10    # spill
130     movl    R10, R8 # spill
133     addl    R10, #7 # int
137     movdl   R11, XMM1   # spill
13c     imull   R11, R10    # int
140     movl    [rsp + #52], R11    # spill
145     movl    R11, R8 # spill
148     addl    R11, #6 # int
14c     movdl   R10, XMM4   # spill
151     imull   R10, R11    # int
155     movl    [rsp + #56], R10    # spill
15a     movl    R10, R8 # spill
15d     addl    R10, #5 # int
161     movdl   R11, XMM6   # spill
166     imull   R11, R10    # int
16a     movl    [rsp + #60], R11    # spill
16f     movl    R11, R8 # spill
172     addl    R11, #4 # int
176     imull   RBX, R11    # int
17a     movl    R11, R8 # spill
17d     addl    R11, #3 # int
181     imull   RCX, R11    # int
185     movl    R10, R8 # spill
188     addl    R10, #2 # int
18c     imull   RDX, R10    # int
190     movl    R11, R8 # spill
193     incl    R11 # int
196     imull   R9, R11 # int
19a     addl    R9, [RSP + #32 (32-bit)]    # int
19f     addl    R9, RDX # int
1a2     addl    R9, RCX # int
1a5     addl    R9, RBX # int
1a8     addl    R9, [RSP + #60 (32-bit)]    # int
1ad     addl    R9, [RSP + #56 (32-bit)]    # int
1b2     addl    R9, [RSP + #52 (32-bit)]    # int
1b7     addl    R9, [RSP + #48 (32-bit)]    # int
1bc     movl    R10, R8 # spill
1bf     addl    R10, #9 # int
1c3     imull   R10, RSI    # int
1c7     addl    R10, R9 # int
1ca     addl    R10, RDI    # int
1cd     addl    R10, [RSP + #44 (32-bit)]   # int
1d2     movl    R11, R8 # spill
1d5     addl    R11, #12    # int
1d9     imull   R13, R11    # int
1dd     addl    R13, R10    # int
1e0     movl    R10, R8 # spill
1e3     addl    R10, #13    # int
1e7     imull   R10, [RSP + #40 (32-bit)]   # int
1ed     addl    R10, R13    # int
1f0     addl    RBP, R10    # int
1f3     addl    R14, RBP    # int
1f6     movl    R10, R8 # spill
1f9     addl    R10, #16    # int
1fd     cmpl    R10, #999999985
204     jl     B2   # loop end  P=1.000000 C=7419903.000000

نلاحظ هنا المزيد من "الانسكاب" والمزيد من الوصول إلى المكدس [RSP + ...] ، نظرًا لمزيد من النتائج الوسيطة التي يجب الحفاظ عليها.

وبالتالي ، فإن إجابة السؤال بسيطة: 2 * (i * i) أسرع من 2 * i * i لأن JIT تنشئ رمز التجميع الأمثل أكثر للحالة الأولى.


لكن بالطبع من الواضح أنه لا يوجد أي من الإصدارين الأول والثاني غير مفيد ؛ يمكن أن تستفيد الحلقة فعليًا من vectorization ، نظرًا لأن وحدة المعالجة المركزية x86-64 تحتوي على دعم SSE2 على الأقل.

لذلك هي قضية محسن. كما هو الحال في كثير من الأحيان ، فإنه ينتشر بقوة ويطلق النار على قدمه ، في الوقت الذي يفقد فيه العديد من الفرص الأخرى.

في الواقع ، تقوم وحدات المعالجة المركزية الحديثة x86-64 بتقسيم التعليمات إلى مزيد من العمليات الصغيرة (µops) ومع ميزات مثل إعادة تسمية السجل ، وذاكرة التخزين المؤقت للمخازن المؤقتة وحلقات التخزين المؤقت ، يستغرق تحسين الحلقة أكثر بكثير من مجرد التمرير البسيط للحصول على أداء مثالي. وفقًا لدليل تحسين Agner Fog :

يمكن أن يكون المكسب في الأداء بسبب ذاكرة التخزين المؤقت µop كبيرًا إذا كان متوسط ​​طول التعليمات أكثر من 4 بايت. يمكن النظر في الطرق التالية لتحسين استخدام ذاكرة التخزين المؤقت µop:

  • تأكد من أن الحلقات الحرجة صغيرة بما يكفي لتناسب ذاكرة التخزين المؤقت µop.
  • محاذاة إدخالات حلقة الأكثر أهمية وإدخالات الدالة بنسبة 32.
  • تجنب unrolling حلقة لا لزوم لها.
  • تجنب التعليمات التي لها وقت تحميل إضافي
    . . .

فيما يتعلق بأوقات الحمل هذه - حتى أسرع عدد مرات تشغيل L1D يكلف 4 دورات ، سجل إضافي و µop ، لذا نعم ، حتى عدد قليل من الوصول إلى الذاكرة سيضر بالأداء في حلقات ضيقة.

لكن بالعودة إلى فرصة التحويل - لمعرفة مدى السرعة ، يمكننا تجميع تطبيق C مماثل مع GCC ، والذي يوجهه بشكل مباشر (يتم عرض AVX2 ، SSE2 مشابه)2:

  vmovdqa ymm0, YMMWORD PTR .LC0[rip]
  vmovdqa ymm3, YMMWORD PTR .LC1[rip]
  xor eax, eax
  vpxor xmm2, xmm2, xmm2
.L2:
  vpmulld ymm1, ymm0, ymm0
  inc eax
  vpaddd ymm0, ymm0, ymm3
  vpslld ymm1, ymm1, 1
  vpaddd ymm2, ymm2, ymm1
  cmp eax, 125000000      ; 8 calculations per iteration
  jne .L2
  vmovdqa xmm0, xmm2
  vextracti128 xmm2, ymm2, 1
  vpaddd xmm2, xmm0, xmm2
  vpsrldq xmm0, xmm2, 8
  vpaddd xmm0, xmm2, xmm0
  vpsrldq xmm1, xmm0, 4
  vpaddd xmm0, xmm0, xmm1
  vmovd eax, xmm0
  vzeroupper

مع أوقات التشغيل:

  • SSE: 0.24 ثانية ، أو أسرع مرتين.
  • AVX: 0.15 ثانية ، أو 3 مرات أسرع.
  • AVX2: 0.08 ثانية ، أو أسرع 5 مرات.

1للحصول على إخراج التجميع الذي تم إنشاؤه بواسطة JIT ، احصل على تصحيح JVM وقم بتشغيله مع -XX:+PrintOptoAssembly

2يتم تصنيف الإصدار C بعلامة -fwrapv ، والتي تمكن دول مجلس التعاون الخليجي من التعامل مع تجاوز عدد صحيح موقّع على أنه التفاف مكمل للاثنين.

1118
rustyx

عندما يكون الضرب 2 * (i * i) ، يكون JVM قادرًا على حل الضرب بواسطة 2 من الحلقة ، مما ينتج عنه هذا الرمز المكافئ ولكنه أكثر فعالية:

int n = 0;
for (int i = 0; i < 1000000000; i++) {
    n += i * i;
}
n *= 2;

ولكن عندما يكون الضرب (2 * i) * i ، فإن JVM لا تعمل على تحسينه لأن الضرب بواسطة ثابت لم يعد صحيحًا قبل الإضافة.

فيما يلي بعض الأسباب التي تجعلني أعتقد أن هذا هو الحال:

  • تؤدي إضافة عبارة if (n == 0) n = 1 في بداية الحلقة إلى جعل كلا الإصدارين فعالين ، حيث إن مراعاة عملية الضرب لم تعد تضمن أن النتيجة ستكون هي نفسها
  • الإصدار الأمثل (عن طريق حساب الضرب في 2) هو بنفس سرعة الإصدار 2 * (i * i)

إليك رمز الاختبار الذي استخدمته لرسم هذه الاستنتاجات:

public static void main(String[] args) {
    long fastVersion = 0;
    long slowVersion = 0;
    long optimizedVersion = 0;
    long modifiedFastVersion = 0;
    long modifiedSlowVersion = 0;

    for (int i = 0; i < 10; i++) {
        fastVersion += fastVersion();
        slowVersion += slowVersion();
        optimizedVersion += optimizedVersion();
        modifiedFastVersion += modifiedFastVersion();
        modifiedSlowVersion += modifiedSlowVersion();
    }

    System.out.println("Fast version: " + (double) fastVersion / 1000000000 + " s");
    System.out.println("Slow version: " + (double) slowVersion / 1000000000 + " s");
    System.out.println("Optimized version: " + (double) optimizedVersion / 1000000000 + " s");
    System.out.println("Modified fast version: " + (double) modifiedFastVersion / 1000000000 + " s");
    System.out.println("Modified slow version: " + (double) modifiedSlowVersion / 1000000000 + " s");
}

private static long fastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long slowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

private static long optimizedVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += i * i;
    }
    n *= 2;
    return System.nanoTime() - startTime;
}

private static long modifiedFastVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * (i * i);
    }
    return System.nanoTime() - startTime;
}

private static long modifiedSlowVersion() {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        if (n == 0) n = 1;
        n += 2 * i * i;
    }
    return System.nanoTime() - startTime;
}

وهنا النتائج:

Fast version: 5.7274411 s
Slow version: 7.6190804 s
Optimized version: 5.1348007 s
Modified fast version: 7.1492705 s
Modified slow version: 7.2952668 s
125
Runemoro

رموز البايت: https://cs.nyu.edu/courses/fall00/V22.0201-001/jvm2.html رموز بايت عارض: https://github.com/Konloch/bytecode-viewer

على JDK الخاص بي (Windows 10 64 bit، 1.8.0_65-b17) يمكنني إعادة إنتاج وشرح:

public static void main(String[] args) {
    int repeat = 10;
    long A = 0;
    long B = 0;
    for (int i = 0; i < repeat; i++) {
        A += test();
        B += testB();
    }

    System.out.println(A / repeat + " ms");
    System.out.println(B / repeat + " ms");
}


private static long test() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multi(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multi(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms A " + n);
    return ms;
}


private static long testB() {
    int n = 0;
    for (int i = 0; i < 1000; i++) {
        n += multiB(i);
    }
    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 1000000000; i++) {
        n += multiB(i);
    }
    long ms = (System.currentTimeMillis() - startTime);
    System.out.println(ms + " ms B " + n);
    return ms;
}

private static int multiB(int i) {
    return 2 * (i * i);
}

private static int multi(int i) {
    return 2 * i * i;
}

انتاج:

...
405 ms A 785527736
327 ms B 785527736
404 ms A 785527736
329 ms B 785527736
404 ms A 785527736
328 ms B 785527736
404 ms A 785527736
328 ms B 785527736
410 ms
333 ms

اذا لماذا؟ رمز البايت هو هذا:

 private static multiB(int arg0) { // 2 * (i * i)
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         iload0
         imul
         imul
         ireturn
     }
     L2 {
     }
 }

 private static multi(int arg0) { // 2 * i * i
     <localVar:index=0, name=i , desc=I, sig=null, start=L1, end=L2>

     L1 {
         iconst_2
         iload0
         imul
         iload0
         imul
         ireturn
     }
     L2 {
     }
 }

الفرق هو: مع الأقواس (2 * (i * i)):

  • دفع المكدس const
  • دفع المحلية على المكدس
  • دفع المحلية على المكدس
  • ضرب أعلى من المكدس
  • ضرب أعلى من المكدس

بدون أقواس (2 * i * i):

  • دفع المكدس const
  • دفع المحلية على المكدس
  • ضرب أعلى من المكدس
  • دفع المحلية على المكدس
  • ضرب أعلى من المكدس

يكون تحميل كل شيء على المكدس ثم العمل لأسفل أسرع من التبديل بين وضع المكدس وتشغيله.

40
DSchmidt

Kasperd طلب في تعليق للإجابة المقبولة:

تستخدم أمثلة Java و C أسماء تسجيل مختلفة تمامًا. هل يستخدم كلاهما مثال AMD64 ISA؟

xor edx, edx
xor eax, eax
.L2:
mov ecx, edx
imul ecx, edx
add edx, 1
lea eax, [rax+rcx*2]
cmp edx, 1000000000
jne .L2

ليس لدي ما يكفي من السمعة للإجابة على هذا في التعليقات ، ولكن هذه هي نفس ISA. تجدر الإشارة إلى أن إصدار GCC يستخدم منطق عدد صحيح 32 بت وأن إصدار JVM المترجم يستخدم منطق عدد صحيح 64 بت داخليًا.

R8 إلى R15 هي فقط X86_64 سجلات . EAX to EDX هي الأجزاء السفلية من سجلات RAX إلى RDX للأغراض العامة. الجزء المهم في الإجابة هو أن إصدار دول مجلس التعاون الخليجي غير مسجل. ينفذ ببساطة جولة واحدة من الحلقة لكل حلقة رمز الجهاز الفعلي. في حين أن إصدار JVM يحتوي على 16 جولة من الحلقة في حلقة فعلية واحدة (بناءً على إجابة rustyx ، لم أقم بإعادة تفسير التجميع). هذا أحد الأسباب وراء استخدام المزيد من السجلات لأن جسم الحلقة يبلغ طوله 16 مرة.

34
Puzzled

على الرغم من عدم ارتباطي المباشر ببيئة السؤال ، ولكن من أجل الفضول ، قمت بإجراء نفس الاختبار على وضع الإصدار .NET Framework 2.1 ، x64 ،.

هذه هي النتيجة المثيرة للاهتمام ، حيث تؤكد حدوث حالات مماثلة (على العكس) تحدث على الجانب المظلم من القوة. الشفرة:

static void Main(string[] args)
{
    Stopwatch watch = new Stopwatch();

    Console.WriteLine("2 * (i * i)");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * (i * i);
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds} ms");
    }

    Console.WriteLine();
    Console.WriteLine("2 * i * i");

    for (int a = 0; a < 10; a++)
    {
        int n = 0;

        watch.Restart();

        for (int i = 0; i < 1000000000; i++)
        {
            n += 2 * i * i;
        }

        watch.Stop();

        Console.WriteLine($"result:{n}, {watch.ElapsedMilliseconds}ms");
    }
}

نتيجة:

2 * (i * i)

  • النتيجة: 119860736 ، 438 مللي ثانية
  • النتيجة: 119860736 ، 433 مللي ثانية
  • النتيجة: 119860736 ، 437 مللي ثانية
  • النتيجة: 119860736 ، 435 مللي ثانية
  • النتيجة: 119860736 ، 436 مللي ثانية
  • النتيجة: 119860736 ، 435 مللي ثانية
  • النتيجة: 119860736 ، 435 مللي ثانية
  • النتيجة: 119860736 ، 439 مللي ثانية
  • النتيجة: 119860736 ، 436 مللي ثانية
  • النتيجة: 119860736 ، 437 مللي ثانية

2 * أنا * أنا

  • النتيجة: 119860736 ، 417 مللي ثانية
  • النتيجة: 119860736 ، 417 مللي ثانية
  • النتيجة: 119860736 ، 417 مللي ثانية
  • النتيجة: 119860736 ، 418 مللي ثانية
  • النتيجة: 119860736 ، 418 مللي ثانية
  • النتيجة: 119860736 ، 417 مللي ثانية
  • النتيجة: 119860736 ، 418 مللي ثانية
  • النتيجة: 119860736 ، 416 مللي ثانية
  • النتيجة: 119860736 ، 417 مللي ثانية
  • النتيجة: 119860736 ، 418 مللي ثانية
29
Ünsal Ersöz

حصلت على نتائج مماثلة:

2 * (i * i): 0.458765943 s, n=119860736
2 * i * i: 0.580255126 s, n=119860736

حصلت علىنفسالنتائج إذا كانت كلتا الحلقات في نفس البرنامج ، أو كان كل منهما في ملف.

أخيرًا ، إليك شفرة javap -c -v <.Java> لكل من:

     3: ldc           #3                  // String 2 * (i * i):
     5: invokevirtual #4                  // Method Java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method Java/lang/System.nanoTime:()J
     8: invokestatic  #5                  // Method Java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: iload         4
    30: imul
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

vs.

     3: ldc           #3                  // String 2 * i * i:
     5: invokevirtual #4                  // Method Java/io/PrintStream.print:(Ljava/lang/String;)V
     8: invokestatic  #5                  // Method Java/lang/System.nanoTime:()J
    11: lstore_1
    12: iconst_0
    13: istore_3
    14: iconst_0
    15: istore        4
    17: iload         4
    19: ldc           #6                  // int 1000000000
    21: if_icmpge     40
    24: iload_3
    25: iconst_2
    26: iload         4
    28: imul
    29: iload         4
    31: imul
    32: iadd
    33: istore_3
    34: iinc          4, 1
    37: goto          17

لمعلوماتك -

Java -version
Java version "1.8.0_121"
Java(TM) SE Runtime Environment (build 1.8.0_121-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode)
20
paulsm4

جربت JMH باستخدام النموذج الأصلي الافتراضي: لقد أضفت أيضًا نسخة محسنة استنادًا إلى شرح Runemoro .

@State(Scope.Benchmark)
@Warmup(iterations = 2)
@Fork(1)
@Measurement(iterations = 10)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
//@BenchmarkMode({ Mode.All })
@BenchmarkMode(Mode.AverageTime)
public class MyBenchmark {
  @Param({ "100", "1000", "1000000000" })
  private int size;

  @Benchmark
  public int two_square_i() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * (i * i);
    }
    return n;
  }

  @Benchmark
  public int square_i_two() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += i * i;
    }
    return 2*n;
  }

  @Benchmark
  public int two_i_() {
    int n = 0;
    for (int i = 0; i < size; i++) {
      n += 2 * i * i;
    }
    return n;
  }
}

النتيجة هنا:

Benchmark                           (size)  Mode  Samples          Score   Score error  Units
o.s.MyBenchmark.square_i_two           100  avgt       10         58,062         1,410  ns/op
o.s.MyBenchmark.square_i_two          1000  avgt       10        547,393        12,851  ns/op
o.s.MyBenchmark.square_i_two    1000000000  avgt       10  540343681,267  16795210,324  ns/op
o.s.MyBenchmark.two_i_                 100  avgt       10         87,491         2,004  ns/op
o.s.MyBenchmark.two_i_                1000  avgt       10       1015,388        30,313  ns/op
o.s.MyBenchmark.two_i_          1000000000  avgt       10  967100076,600  24929570,556  ns/op
o.s.MyBenchmark.two_square_i           100  avgt       10         70,715         2,107  ns/op
o.s.MyBenchmark.two_square_i          1000  avgt       10        686,977        24,613  ns/op
o.s.MyBenchmark.two_square_i    1000000000  avgt       10  652736811,450  27015580,488  ns/op

على جهاز الكمبيوتر الخاص بي ( Core i7 860 - لا تفعل شيئًا بعيدًا عن القراءة على هاتفي الذكي):

  • n += i*i ثم n*2 هو الأول
  • 2 * (i * i) هي الثانية.

من الواضح أن JVM لا تحسن بنفس الطريقة التي يعمل بها الإنسان (بناءً على إجابة Runemoro).

الآن بعد ذلك ، اقرأ bytecode: javap -c -v ./target/classes/org/sample/MyBenchmark.class

لست خبيراً في الرمز البريدي ، لكننا (iload_2) قبل (imul): من المحتمل أن يكون هذا هو الاختلاف: يمكنني أن أفترض أن JVM تعمل على تحسين القراءة i مرتين (i هنا بالفعل ، وليس هناك حاجة إلى تحميلها مرة أخرى) رمز 2*i*i لا يمكنه ذلك.

16
NoDataFound

أكثر من ملحق. قمت بتكرار التجربة باستخدام أحدث Java 8 JVM من IBM:

Java version "1.8.0_191"
Java(TM) 2 Runtime Environment, Standard Edition (IBM build 1.8.0_191-b12 26_Oct_2018_18_45 Mac OS X x64(SR5 FP25))
Java HotSpot(TM) 64-Bit Server VM (build 25.191-b12, mixed mode)

وهذا يظهر نتائج مماثلة جدا:

0.374653912 s
n = 119860736
0.447778698 s
n = 119860736

(النتائج الثانية باستخدام 2 * i * i).

من المثير للاهتمام ، عند التشغيل على نفس الجهاز ، ولكن باستخدام Oracle Java:

Java version "1.8.0_181"
Java(TM) SE Runtime Environment (build 1.8.0_181-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.181-b13, mixed mode)

النتائج في المتوسط ​​أبطأ قليلاً:

0.414331815 s
n = 119860736
0.491430656 s
n = 119860736

قصة قصيرة طويلة: حتى رقم الإصدار الثانوي من HotSpot مهم هنا ، حيث يمكن أن يكون للاختلافات الدقيقة داخل تطبيق JIT تأثيرات ملحوظة.

13
GhostCat

ملاحظة مثيرة للاهتمام باستخدام Java 11 وإيقاف تشغيل حلقة الإلغاء مع الخيار التالي [VM]:

-XX:LoopUnrollLimit=0

ينتج عن الحلقة ذات التعبير 2 * (i * i) تعليمة برمجية أصلية أكثر ضغطًا1:

L0001: add    eax,r11d
       inc    r8d
       mov    r11d,r8d
       imul   r11d,r8d
       shl    r11d,1h
       cmp    r8d,r10d
       jl     L0001

بالمقارنة مع إصدار 2 * i * i:

L0001: add    eax,r11d
       mov    r11d,r8d
       shl    r11d,1h
       add    r11d,2h
       inc    r8d
       imul   r11d,r8d
       cmp    r8d,r10d
       jl     L0001

إصدار جافا:

Java version "11" 2018-09-25
Java(TM) SE Runtime Environment 18.9 (build 11+28)
Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11+28, mixed mode)

نتائج الاختبار:

Benchmark          (size)  Mode  Cnt    Score     Error  Units
LoopTest.fast  1000000000  avgt    5  694,868 ±  36,470  ms/op
LoopTest.slow  1000000000  avgt    5  769,840 ± 135,006  ms/op

شفرة المصدر المرجعية:

@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@Warmup(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 5, timeUnit = TimeUnit.SECONDS)
@State(Scope.Thread)
@Fork(1)
public class LoopTest {

    @Param("1000000000") private int size;

    public static void main(String[] args) throws RunnerException {
        Options opt =
            new OptionsBuilder().include(LoopTest.class.getSimpleName())
                                .jvmArgs("-XX:LoopUnrollLimit=0")
                                .build();
        new Runner(opt).run();
    }

    @Benchmark
    public int slow() {
        int n = 0;
        for (int i = 0; i < size; i++) {
            n += 2 * i * i;
        }
        return n;
    }

    @Benchmark
    public int fast() {
        int n = 0;
        for (int i = 0; i < size; i++) {
            n += 2 * (i * i);
        }
        return n;
    }
}

1 - VM الخيارات المستخدمة: -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly -XX:LoopUnrollLimit=0

13
Oleksandr

تنشئ طريقتان لإضافة رمز بايت مختلف قليلاً:

  17: iconst_2
  18: iload         4
  20: iload         4
  22: imul
  23: imul
  24: iadd

بالنسبة لـ 2 * (i * i) vs:

  17: iconst_2
  18: iload         4
  20: imul
  21: iload         4
  23: imul
  24: iadd

من أجل 2 * i * i.

وعند استخدام JMH معيار مثل هذا:

@Warmup(iterations = 5, batchSize = 1)
@Measurement(iterations = 5, batchSize = 1)
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
public class MyBenchmark {

    @Benchmark
    public int noBrackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * i * i;
        }
        return n;
    }

    @Benchmark
    public int brackets() {
        int n = 0;
        for (int i = 0; i < 1000000000; i++) {
            n += 2 * (i * i);
        }
        return n;
    }

}

الفرق واضح:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: <none>

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  380.889 ± 58.011  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  512.464 ± 11.098  ms/op

ما تلاحظه صحيح ، وليس مجرد حالة شاذة في أسلوب قياس الأداء لديك (على سبيل المثال لا توجد عملية احماء ، راجع كيف أكتب معيارًا صغيرًا صحيحًا في Java؟ )

الركض مرة أخرى مع Graal:

# JMH version: 1.21
# VM version: JDK 11, Java HotSpot(TM) 64-Bit Server VM, 11+28
# VM options: -XX:+UnlockExperimentalVMOptions -XX:+EnableJVMCI -XX:+UseJVMCICompiler

Benchmark                      (n)  Mode  Cnt    Score    Error  Units
MyBenchmark.brackets    1000000000  avgt    5  335.100 ± 23.085  ms/op
MyBenchmark.noBrackets  1000000000  avgt    5  331.163 ± 50.670  ms/op

ترى أن النتائج أقرب كثيرًا ، وهذا أمر منطقي ، نظرًا لأن Graal عبارة عن مترجم بشكل عام أفضل أداءً وأكثر حداثة.

لذا فإن الأمر متروك حقًا لمدى قدرة برنامج التحويل البرمجي JIT على تحسين جزء معين من التعليمات البرمجية ، وليس بالضرورة سبب منطقي لذلك.

5
Jorn Vernee